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remains to be seen if similar regularities will also hold 
for graphs with n = 12 and more vertices. 

The purpose of this work has been to demonstrate an 
analytical route to generation of graphs of prescribed 
form. In the series of papers that will follow the subject 
will be elaborated and applied to problems of interest in 
chemistry, such as construction of all molecular 
skeletons of prescribed valency distribution, construc- 
tion of all polyhedra of a given size, construction of 
cluster forms of interest in chemistry of heavy elements, 
and construction of two-dimensional and three- 
dimensional connected networks of interest in crystal 
chemistry. The application can be extended to struc- 
tures having multiple bonds and loops, as well as to 
directed graphs when appropriate modifications are 
introduced which take into account the new constraints 
on the adjacency matrices. Clearly, some ramifications 
might be of more interest for their mathematical or 
chemical, rather than their structural, aspect (for 
example, enumerating polyhedra or various isomers); 
as these arise they will be briefly mentioned, and the 
interested reader will be referred to more complete 
accounts of such studies presented elsewhere. 

The author wishes to thank Dr D. H. Rouvray 
(Mtilheim, Germany) for comments which led to an 
improvement of the presentation of the material. This 
work was supported by the US Department of Energy, 
Division of Basic Energy Sciences. 
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A new method is described for the calculation of Cartesian coordinates for n points given the n x n matrix of 
interpoint distances. The algorithm is faster than some earlier methods, and it is remarkably stable with 
respect to both numerical roundoff errors and errors in the given distance matrix. The resultant coordinates 
have their origin near the center of mass and axes approximately along the three principal rotational axes. 
The calculation is described of distances to the center of mass directly from the distance matrix. Results of 
computer trials of the algorithm are given. 

Introduction 

Our recent work (Crippen, 1977a,b; Kuntz, Crippen & 
Kollman, 1977) on the calculation of the conformation 
of proteins by the 'distance geometry' approach has as 

an important step the computation of atomic coordi- 
nates given a trial matrix of interatomic distances. The n 
x n trial matrix D is chosen to be elementwise bounded 
by a matrix of upper bound distances U and one of 
lower bound distances L, but even so, it is usually 
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impossible to find coordinates (vt, i = 1, . . . ,  n) in three 
dimensions which match D exactly. In other words 

11 v i - viii = dijfor all i and j ,  (1) 

has usually no solution for arbitrary D. What  we desire 
are trial coordinates that approximately satisfy (1), 
which we can subsequently refine until 

lij <_ II vi - vytl < u o (2) 

holds for all i and j. This problem is not confined to 
conformational calculations, but arises whenever in- 
complete or inaccurate geometric information on inter- 
point distances must be converted into Cartesian 
coordinates. The errors in the distances may stem from 
experimental inaccuracies or simply from numerical 
roundoff. A number of numerical solutions have been 
proposed (Crippen, 1977a,b; Mackay,  1974), but they 
are either time-consuming, or the trial coordinates are 
ill-conditioned (i.e. small changes in D give rise to large 
changes in the v's), or the trial coordinates can be very 
far from satisfying (1) even when D is only slightly in 
error. The method given in the next section has proven 
in our experience to be a considerable improvement on 
all three counts. 

definite), a convenient algorithm for this step is the 
method of 'exhaustion' as described by Faddeev & 
Faddeeva (1963). 

IV. Finally, the three coordinates of each of the n 
points, vu, j = 1, . . . ,  3 and i = 1, . . . ,  n are calculated 
by 

= ~1,2 , , ,  ( 5 )  l ) i j  "~j " l j "  

In the cases where some 2j < 0 due to errors in D, we 
arbitrarily use I 2jl in place of 2j. It is easy to show that 
(5) is correct by noting that 

ge = ~ WikWtj2k 
k = l  

when all eigenvalues and eigenvectors have been 
calculated. But if we knew the coordinates of the points 
in n-dimensional space, then 

gu = ~ VikVjk 
k = l  

by the definition of the metric matrix. Equating 
corresponding terms in the two sums yields (5). 

The  algori thm 

I. Given the trial distances matrix D = (dij) where i 
a n d j  = 1, . . . .  n, calculate the distance of each point i 
to the center of mass, denoted as point O. 

n n j - I  

d20 = n -~ Zdi 2 -  n -2 Z Z 42k. (3) 
j = l  j = 2 k = l  

See the Appendix for proof of (3). If D corresponds to 
distances between points located in Euclidean space of 
any number of dimensions, then (3) holds because the 
proof depends only on the most general properties of 
vectors. 

II. Following Mackay (1974) we next calculate the n x 
n metric matrix G = (gu) using the center-of-mass 

. distances 
' = 1 2 d 2 --  d~). (4) gu :(dio + ~o 

: Equation (4) is simply the law of cosines, because gtj is 
: the dot product of the two vectors from the center of 
• mass to points i and j respectively. Depending on the 

nature of the D matrix, the points should in general be 
viewed as still being located in n -  1-dimensional 

: Euclidean space, where n - 1 > 3. 

III. Find the (largest) three eigenvalues, 21, 22 and 23, 
of G, such that I)].11 > 1221 _> 1231 > . . .  _ IAnl. 
Similarly determine their corresponding eigenvectors, 
given as the three columns of the n x 3 matrix W. Since 
G is real and symmetric (and usually positive semi- 

D i s c u s s i o n  

The stability of the algorithm is readily apparent. 
Calculating G with respect to the center of mass, as 
opposed to some possibly distant point, ensures that the 
glj's are not uniform in magnitude and sign, and that 
the resultant coordinates are all comparable in magni- 
tude. Choosing the first three largest eigenvalues 
amounts to choosing the coordinate axes along the 
largest three principal axes of the collection of points, 
thus attributing the least possible scatter to the fourth 
and higher dimensions. Therefore the v's constitute an 
optimal fit to D [i.e. the least deviation from (1)] in this 
sense. 

It has been our experience that the use of (3) gives 
non-negative distances to the center of mass for almost 
all reasonable choices of D. It can still happen that an 
eigenvalue will be negative, but at least some sort of 
useful coordinates will result, nevertheless. It should be 
noted that the coordinate generation of Mackay (1974) 
involves a Choleski decomposition of G, which also 
requires G to be positive definite. 

In timed trials, the present algorithm runs some 20% 
faster than our previous method (Crippen, 1977b) when 
placing 80 points. The resultant trial coordinates give a 
consistently better match to D initially, and the success 
of the subsequent refinement to satisfy (2) is so assured 
that failure to converge in refinement can be taken as 
an indication of a geometric impossibility built into the 
boundary matrices, U and L. The method has been 
successful in conformational calculations on pancreatic 
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trypsin inhibitor, tobacco mosaic virus coat protein, 
rubredoxin, and lysozyme. Mackay 's  (1974) method is 
potentially much more rapid, since only a tri- 
angularization of G is involved, and no eigenvalues. 
However, in our hands, the resultant coordinates are 
very sensitive to small errors in D, apparently as a 
result of the inherent instability of Choleski decom- 
position of nearly singular matrices. 

This work was supported by a grant from the 
Academic Senate of the University of California. The 
authors thank Dr I .D .  Kuntz, for stimulating and 
helpful discussions. 

By the law of cosines, 

d2o = (2n2) - '  ~ ~ (d~. + d~2k- d~) 
j=2  k=2 

= (2nZ)-l[2(n - 1)~. d ~ -  2 ~ k  d~k] 
j=2  2=j<k  A 

n 
- ( n -  l)/(n 2) ~ d 2 - n-2Z Z d 2 
- -  j l  jk 

j=2  2=j<k 

= n -1 d~ - n - 2 ~  ~ d 2 Jk" 
j=l l=j<k 

A P P E N D I X  

Proof of equation (3) 

Let rkt denote the vector from point l to point k; n = 
total number of points; and O denotes the center-of- 
mass point. From the definition of the center of mass of 
an array of points, each of unit mass: 

~ . r j o =  0 :  ~. (rio + rt/) 
j = l  j = l  

so that 

and 

rio = _ n - I  ~.  r U 
j=2  

d~o = r o. = n-2 Z rt/. rlk. 
j=2  k=2 

Since the labelling of the points is arbitrary, then we 
have the general formula 

~. n j - 1  
d~o = n-' d.~- n-2Z ~ d 2 jk" 

j = l  j = 2 k = l  
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Optical transforms of the models of atomic configurations around edge and screw dislocations in f.c.c, and 
b.c.c, lattices as well as grain boundaries have been obtained with the help of a laser diffractometer. The 
models used were based on computer simulation studies of other workers. It has been observed that the 
intensity at the reciprocal lattice points splits into annular haloes or takes the 'figure of eight' shape in some 
cases. The directional dependence of the splitting has been compared with the existing theories. It has also 
been observed that with ordering of the dislocations at the grain boundaries, the diffraction pattern resembles 
that of a single dislocation. 

Introduct ion  

As a result of elastic strain around the lattice defects 
there is a displacement of atoms from their normal 

lattice sites. Huang (1947), considering a random 
distribution of defects, each producing a spherically 
symmetric displacement field U = r/Irl  3, has shown 
that crystals containing such defects would give rise to 


